Year 8 Chemistry Curriculum - 2022-2023						
	Autumn Term		Spring Term		Summer Term	
	1	2	1	2	1	

. hy now8	and Compounds	se(eral concepts	on 2nowledge		
. ITY ITOWO	is taught at this	underpinning the	\$rom the 6ear <		
	point as pupils	"ig picture o\$	o(erarching		
		this &eriodic	modules \$rom		
	now understand		· ·		
	that all	' a" le topic o\$	Chemical		
	su" stances are	learning, ; or	Reactions in		
	made \$rom	e-ample# atoms	terms o\$ Acids		
	particles, 'his	and elements	and Al2alis, 1t		
	will now "e	\$rom the	\$urther practices		
	de(eloped	pre(ious module#	chemical		
	\$urther to relate	&ure and 1mpure	e%uations and		
	to the atom as	Ou"stances at	\$rom Metals and		
	well as ma2ing	the "eginning o\$	Non*metals		
	prior lin2s with	year < and	where the		
	concepts \$rom	Metals and Non*	reactions o\$		
	Metals and Non*	metals \$rom later	metals with acids		
	metals and the	in year <,	was studied, ' his		
	"asic structure o\$	Conclusions can	will now de(elop		
	the periodic	"e drawn# while			
	ta"le,	opening new			
	; urther lin2s are	areas o\$ learning			
	made "ac2 to	in year =# where			
	the Earths	pupils will			
	Otructure	in(estigate how			
	module# where	the &eriodic			
	pupils were	' a" le was			
	introduced to the	de(eloped,			
	notion o\$				
	properties o\$				
	compounds,				
	&upils ha(e				
	pre(iously				
	studied word				
	e%uations in the				
	topic Acids and				
	Al2alis# Metals				
	and Non*metals#				
	which will now				

ine	crease in	reduce the	' his module will	metals is more
co	omple-ity as	impact humans	draw on these	ad(antageous t
	ey are	ha(e on the	cross curricular	the en (ironmen
	troduced to	en(ironment,	2ey themes so	in terms o\$
ch	nemical		that the	reducing car" or
\$o	rmulae to		processes "ehind	\$ootprint,
re	present		the recycling o\$	·
ele	ements#		car" on can "e	
co	mpounds and		studied, 1t also	
m-	olecules, ' his		incorporates	
wi	II "e carried		2nowledge o\$	
ac	cross to the		radiation \$rom	
" i <i>e</i>	ology topic		the earlier topic	
	ellular		in 6ear >#	
Re	espiration		+eating and	
wh	hich is taught		Cooling in	
	ter in year > so		&hysics,	
	ıpils can "uild			
	n the word			
e%	Guation and can			
su	"se%uently			
	allenge their			
	nowledge to			
	se chemical			
· ·	rmulae to show			
	e rele(ant			
	Guations# rather			
	an @ust using			
W	ord e%uations,			

CS

Characteristi | &upils will ha(e opportunities to de(elop their listening s2ills throughout the academic year# speci: cally when "eing gi(en instructions for in(estigati(e wor2 for e,g, displacement reactions, 'hey will also listen to each other throughout group wor2 and opportunities \$or presenting their wor2,

! ro" lem Sol(ing

&upils will use pro"lem sol(ing s2ills when e(aluating the results \$rom in(estigati(e processes, ' hey will wor2 colla" orati(ely to e-plain the results of their practical e-periments using scienti: c reasoning,

	methods and use Team* or+, &upi	o\$ le(el ladders in ls will "e re%uired t	tas2s, o wor2 in a group w	pecially "e met duri whilst carrying out p world o\$ wor2 irresp	ractical wor2 or pro	"lem*sol(ing
Aspirations & Careers	' he science in(ol(ed in this area correlates withA* * Chemical engineer * Energy manager * &roduction manager	' he science in(ol(ed in this area correlates withA* * ; urniture designer * Chemical metallurgist * Chemist	'he science in(ol(ed in this area correlates withA* * Chemical technician * 'eacher o\$ chemistry * ; orensic scientist	' he science in(ol(ed in this area correlates withA* * &roduct design * Chemical engineer * Research scientist	' he science in(ol(ed in this area correlates withA* * Bardener * ; armer * En(ironmental scientist	' he science in(ol(ed in this area correlates withA* * Recycling operati(e * Chartered engineer * Mining
	CE-A. Medical E-perience days Careers; airs . or2 E-perience Cultural Capital &upils are encouraged to ma2e lin2s "etween current e(ents# such as using hy"rid (ehicles and climate change and our Chemistry learning in the classroom, All pupils ta2e ad(antage o\$ our e-cellent lin2s with the ROC and Newcastle Uni(ersity \$or o! site (isits and in school acti(ities, E/tracurricular Otem Clu" Durham Uni(ersity Chemistry Cecture series					

Year	Basic	Clear	Detailed
Group	(Lower Ability End Points)	(Middle Ability End Points)	(Hig er Ability End Points)

